The (\(t\))-property of some classes of graphs

S. Aparna Lakshmanan*, A. Vijayakumar

Department of Mathematics, Cochin University of Science and Technology, Cochin - 682 022, Kerala, India

Received 26 April 2007; received in revised form 15 December 2007; accepted 17 December 2007

Abstract

In this note, the (\(t\))-properties of five classes of graphs are studied. We prove that the classes of cographs and clique perfect graphs without isolated vertices satisfy the (2)-property and the (3)-property, but do not satisfy the (\(t\))-property for \(t \geq 4\). The (\(t\))-properties of the planar graphs and the perfect graphs are also studied. We obtain a necessary and sufficient condition for the restricted graph of index \(k\) to satisfy the (2)-property.

Keywords: Clique transversal number; (\(t\))-property

1. Introduction

We consider only finite, simple graphs \(G = (V, E)\) with \(|V| = n\) and \(|E| = m\).

A complete of a graph \(G\) is a complete subgraph of \(G\) and a clique of a graph \(G\) is a maximal complete of \(G\). A subset \(V'\) of \(V\) is called a clique transversal if it intersects with every clique of \(G\). The clique transversal number \(\tau_c(G)\) of a graph \(G\) is the minimum cardinality of a clique transversal of \(G\) [13]. For details, the reader may refer to [1,6,12].

The order \(n\) of \(G\) is an obvious upper bound for the clique transversal number. In an attempt to find graphs which admit a better upper bound, Tuza [13] introduced the concept of the (\(t\))-property. A class \(\mathcal{G}\) of graphs satisfies the (\(t\))-property if \(\tau_c(G) \leq \frac{n}{t}\) for every \(G \in \mathcal{G}\) where every edge of \(G\) is contained in a \(K_t \subseteq G\). Note that the (\(t\))-property does not imply the (\(t - 1\))-property.

It is known [7] that every chordal graph satisfies the (2)-property. In [13], it is proved that the (3)-property holds for chordal graphs; split graphs have the (4)-property, but do not have the (5)-property and hence the chordal graphs also do not have the (5)-property. It is proved [9] that the (4)-property does not hold for chordal graphs.

Motivated by the open problems mentioned in [7], we studied the (\(t\))-property for the cographs, the clique perfect graphs, the perfect graphs, the planar graphs and the restricted graphs of index \(k\). The cographs are a subclass of the perfect graphs [10] and also of the clique perfect graphs [12].

The (\(t\))-properties of the various classes of graphs which we studied in this paper are summarized in the following table.

* Corresponding author.
E-mail addresses: aparna@cusat.ac.in (S. Aparna Lakshmanan), vijay@cusat.ac.in (A. Vijayakumar).

0012-365X/$ - see front matter © 2008 Published by Elsevier B.V.

Please cite this article in press as: S. Aparna Lakshmanan, A. Vijayakumar, The (\(t\))-property of some classes of graphs, Discrete Mathematics (2008), doi:10.1016/j.disc.2007.12.057
<table>
<thead>
<tr>
<th>Class</th>
<th>Satisfy (t)-property</th>
<th>Do not satisfy (t)-property</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cographs</td>
<td>2, 3</td>
<td>≥ 4</td>
</tr>
<tr>
<td>Clique perfect graphs</td>
<td>2, 3</td>
<td>≥ 4</td>
</tr>
<tr>
<td>Planar graphs</td>
<td>--</td>
<td>2, 3, 4</td>
</tr>
<tr>
<td>Perfect graphs</td>
<td>--</td>
<td>≥ 2</td>
</tr>
</tbody>
</table>

All graph theoretic terminology and notation not mentioned here are from [2].

2. The (t)-property

2.1. Cographs and clique perfect graphs

A graph which does not have P_4 - the path on four vertices - as an induced subgraph is called a cograph. The join of two graphs G and H is defined as the graph with $V(G \vee H) = V(G) \cup V(H)$ and $E(G \vee H) = E(G) \cup E(H) \cup \{uv, where u \in V(G) and v \in V(H)\}$.

Cographs [5] can also be recursively defined as follows:

(1) K_1 is a cograph;
(2) if G is a cograph, so is its complement \overline{G}; and
(3) if G and H are cographs, so is their join $G \vee H$.

A clique independent set is a subset of pairwise disjoint cliques of G. The clique independence number $\alpha_c(G)$ of a graph G is the maximum cardinality of a clique independent set of G. Clearly, $\alpha_c(G)$ is a lower bound for $\tau_c(G)$. A graph for which this lower bound is attained for all its induced subgraphs also is called a clique perfect graph [3, 11].

The class of cographs is clique perfect [12]. A characterization of clique perfect graphs by means of a list of minimal forbidden subgraphs is still an open problem.

Lemma 1. If $G = G_1 \vee G_2$ then $\tau_c(G) = \min\{\tau_c(G_1), \tau_c(G_2)\}$.

Proof. Any clique in G is of the form $C_1 \vee C_2$ where C_1 is a clique in G_1 and C_2 is a clique in G_2. If V' is a clique transversal of G_1 (or G_2), then any clique of G which contains a clique of G_1 (or G_2) is covered by V' and hence V' is a clique transversal of G also.

Now, let V' be a clique transversal of G. If possible assume that V' does not cover cliques of G_1 and G_2. Let H_1 and H_2 be the cliques of G_1 and G_2 respectively which are not covered by V'. Then $H_1 \vee H_2$ is a clique of G which is not covered by V', which is a contradiction. Hence V' contains a clique transversal of G_1 or G_2.

Therefore, $\tau_c(G) = \min\{\tau_c(G_1), \tau_c(G_2)\}$.

Lemma 2. The class of all cographs without isolated vertices does not satisfy the (t)-property for $t \geq 4$.

Proof. The proof is by construction.

Case 1: $t = 4$

Let $G = G_1 \vee G_2$, where $G_1 = (3K_1 \cup K_2) \vee (3K_1 \cup K_2)$ and $G_2 = (3K_1 \cup K_2)$. Then $n = 15$, $t = 4$ and $\tau_c(G) = 4$ which implies that $\frac{n}{t} < \tau_c(G)$.

Case 2: $t > 4$

Let $G = G_1 \vee G_2$, where $G_1 = (3K_1 \cup K_{t-3}) \vee (3K_1 \cup K_{t-3})$ and $G_2 = (3K_2 \cup K_{t-2})$.

Then $n(G) = 3t + 4$ and $\tau_c(G) = 4$.

Every edge in G_1 lies in a complete of size t in G since G_2 contains a clique of size $t - 2$. Every edge in G_2 lies in a complete of size $t - 2$ in G since G_1 contains a clique of size $t - 2$. An edge with one end vertex in G_1 and the other end vertex in G_2 lies in a complete of size $t - 2$ since every vertex in G_1 lies in a complete of size $t - 2$ and every vertex of G_2 lies in a complete of size 2. Hence G is a cograph in which every edge lies in a clique of size t.

Also, $\frac{n}{t} = 3 + \frac{4}{t}$

Therefore, $\frac{n}{t} < \tau_c(G)$ for $t > 4$.

Please cite this article in press as: S. Aparna Lakshmanan, A. Vijayakumar, The (t)-property of some classes of graphs, Discrete Mathematics (2008). doi:10.1016/j.disc.2007.12.057
Theorem 3. The class of clique perfect graphs without isolated vertices satisfies the \((t) \)-property for \(t = 2 \) and \(3 \) and does not satisfy the \((t) \)-property for \(t \geq 4 \).

Proof. Let \(G \) be a clique perfect graph in which every edge lies in a complete of size \(t \). \(G \) being clique perfect, \(\tau_c(G) = \alpha_c(G) \).

Case 1: \(t = 2 \)

Since \(G \) is without isolated vertices \(\alpha_c(G) \leq \frac{n}{2} \). So \(\tau_c(G) = \alpha_c(G) \leq \frac{n}{2} \) and hence the class of clique perfect graphs satisfies the \((2) \)-property.

Case 2: \(t = 3 \)

Every edge of \(G \) lies in a clique of size 3. So, the size of the smallest clique of \(G \) is 3. Therefore, \(\alpha_c(G) \leq \frac{n}{3} \) and \(\tau_c(G) = \alpha_c(G) \leq \frac{n}{3} \).

Case 3: \(t \geq 4 \)

The class of cographs is a subclass of clique perfect graphs. So by Lemma 2, the claim follows.

Corollary 4. The class of cographs without isolated vertices satisfies the \((t) \)-property for \(t = 2 \) and \(3 \). Moreover, for the class of connected cographs without isolated vertices, \(\tau_c(G) \) is maximum if and only if \(G \) is the complete bipartite graph \(K_{\frac{n}{2}, \frac{n}{2}} \).

Proof. Since the class of cographs is a subclass of clique perfect graphs, it satisfies the \((t) \)-property for \(t = 2 \) and \(3 \).

Since the class of cographs satisfy the \((2) \)-property and \(\tau_c(K_{\frac{n}{2}, \frac{n}{2}}) = \frac{n}{2} \), the maximum value of \(\tau_c(G) \) is \(\frac{n}{2} \).

Conversely, let \(G \) be a connected cograph with \(\tau_c(G) = \frac{n}{2} \). Since \(G \) is a connected cograph, \(G = G_1 \cup G_2 \). Therefore, \(\tau_c(G) = \min(\tau_c(G_1), \tau_c(G_2)) \). But, \(\tau_c(G_1) \) and \(\tau_c(G_2) \) cannot exceed the numbers of vertices in \(G_1 \) and \(G_2 \) respectively and hence the number of vertices in \(G_1 \) and \(G_2 \) must be \(\frac{n}{2} \). Again, since \(\tau_c(G) = \frac{n}{2} \) all these vertices must be isolated. Therefore, \(G = K_{\frac{n}{2}, \frac{n}{2}} \).

Corollary 5. For the class of clique perfect graphs without isolated vertices, \(\tau_c(G) \) is maximum if and only if there exists a perfect matching in \(G \) in which no edge lies in a triangle.

Proof. The class of clique perfect graphs without isolated vertices satisfies the \((2) \)-property. Therefore, the maximum value that \(\tau_c(G) \) can obtain is \(\frac{n}{2} \). Let \(G \) be a clique perfect graph with \(\tau_c(G) = \frac{n}{2} \). \(G \) being clique perfect, \(\alpha_c(G) = \tau_c(G) = \frac{n}{2} \). Since each clique must have at least two vertices and there are \(\frac{n}{2} \) independent cliques, the cliques are of size exactly 2. Again, this independent set of \(\frac{n}{2} \) cliques forms a perfect matching of \(G \) and a clique being maximal complete, the edges of this perfect matching do not lie in triangles.

Conversely, if there exists a perfect matching in which no edge lies in a triangle, the edges of this perfect matching form an independent set of cliques with cardinality \(\frac{n}{2} \). Therefore, \(\alpha_c(G) \geq \frac{n}{2} \). But, \(\alpha_c(G) \leq \tau_c(G) \leq \frac{n}{2} \) and therefore \(\tau_c(G) = \frac{n}{2} \).

2.2. Planar graphs

It is known that a graph \(G \) is planar if and only if it has no subgraph homeomorphic to \(K_5 \) or \(K_{3,3} \).

Theorem 6. The class of planar graphs does not satisfy the \((t) \)-property for \(t = 2, 3 \) and \(4 \) and \(G_t \) is empty for \(t \geq 5 \).

Proof. Every odd cycle is a planar graph and \(\tau_c(C_{2k+1}) = k + 1 > \frac{2k+1}{2} \). Clearly, odd cycles belong to \(G_2 \) and hence the class of planar graphs does not satisfy the \((2) \)-property.

The graph in Fig. 1 is planar and every edge lies in a triangle. Here, \(n = 8 \) and the clique transversal number is 3 which is greater than \(\frac{n}{2} \) and hence planar graphs do not satisfy the \((3) \)-property. Also, the graph in Fig. 2 is planar and every edge lies in a \(K_4 \). Here, \(n = 15 \) and the clique transversal number is 4 which is greater than \(\frac{n}{2} \) and hence planar graphs do not satisfy the \((4) \)-property.

Since \(K_5 \) is a forbidden subgraph for planar graphs, there is no planar graph \(G \) such that all its edges lie in a \(K_t \) for \(t \geq 5 \). Hence, the theorem.
2.3. Perfect graphs

A graph G is perfect if $\chi(H) = \omega(H)$ for every induced subgraph H of G, where $\chi(H)$ is the chromatic number and $\omega(H)$ is the clique number of H [10]. By the celebrated strong perfect graph theorem [4], a graph is perfect if and only if it has no odd hole or odd anti-hole as an induced subgraph.

Theorem 7. The class of perfect graphs does not satisfy the (t)-property for any $t \geq 2$.

Proof. Let G be the cycle of length $3k$, say $v_1v_2 \ldots v_{3k}v_1$ where $k > 2$ is odd, in which the vertices $v_1, v_4, \ldots, v_{3k-2}$ are all adjacent to each other. Then G is perfect and $\tau_c(G) = \left\lceil \frac{3k}{2} \right\rceil > \frac{3k}{2}$, since $3k$ is odd. Therefore the class of perfect graphs does not satisfy the (2)-property.

Now, the class of perfect graphs does not satisfy the (3)-property since C_8 is a perfect graph in which every edge lies in a triangle and $\tau_c(C_8) = 3 > \frac{8}{3}$.

Since the cographs are a subclass of perfect graphs [5], by Lemma 2, the class of perfect graphs also does not satisfy the (t)-property for $t \geq 4$.

2.4. Trellied graph of index k

For a graph G, $T_k(G)$ the trellied graph of index k is the graph obtained from G by adding k copies of K_2 for each edge uv of G and joining u and v to the respective end vertices of each K_2 [8]. The vertex cover number of a graph G, denoted by $\beta(G)$, is the minimum number of vertices required to cover all the edges of G.

Lemma 8. For any graph G without isolated vertices, $\tau_c(T_k(G)) = km + \beta(G)$.

Proof. We shall prove the theorem for the case $k = 1$.

Let $V' = \{v_1, v_2, \ldots, v_7\}$ be a vertex cover of G. The cliques of $T_1(G)$ are precisely the cliques of G together with the three K_2s formed corresponding to each edge of G. Corresponding to each edge uv of G choose the vertex which corresponds to u of the corresponding K_2, if u is not present in V'. If u is present in V', then choose the vertex corresponding to v, irrespective of whether v is present in V' or not. Let this new collection together with V' be V''. Then V'' is a clique transversal of $T_1(G)$ of cardinality $m + \beta(G)$. Therefore, $\tau_c(T_1(G)) \leq m + \beta(G)$.

Please cite this article in press as: S. Aparna Lakshmanan, A. Vijayakumar, The (t)-property of some classes of graphs, Discrete Mathematics (2008), doi:10.1016/j.disc.2007.12.057
Let \(V' = \{v_1, v_2, \ldots, v_t \} \), where \(t = \tau_c(T_1(G)) \), be a clique transversal of \(T_1(G) \). Let \(uv \) be an edge in \(G \) and let \(u'v' \) be the \(K_2 \) introduced in \(T_1(G) \) corresponding to this \(K_2 \). At least one vertex from \(\{u', v'\} \), say \(u' \), must be present in \(V' \), since \(V' \) is a clique transversal and \(u'v' \) is a clique of \(T_1(G) \). Remove \(u' \) from \(V' \). If \(V' \) contains \(v' \) also then replace \(v' \) by \(v \). If \(v' \notin V' \) then \(v \in V' \), since \(V' \) is a clique transversal and \(uv' \) is a clique of \(T_1(G) \). In either case, one vertex \(v' \) of the edge \(uv \) is present in the new collection. Repeat the process for each edge in \(G \) to get \(V'' \). Clearly, \(V'' \) is a vertex cover of \(G \) with cardinality \(\tau_c(T_1(G)) - m \). Hence, \(\beta(G) \leq \tau_c(T_1(G)) - m \). Thus, \(\tau_c(T_1(G)) = m + \beta(G) \).

By a similar argument we can prove that \(\tau_c(T_k(G)) = km + \beta(G) \).

Notation. For a given class \(\mathcal{G} \) of graphs, let \(T_k(\mathcal{G}) = \{ T_k(G) : G \in \mathcal{G} \} \).

Theorem 9. The class \(T_k(\mathcal{G}) \) satisfies the \((2)\)-property if and only if \(\beta(G) \leq \frac{n}{2} \forall G \in \mathcal{G} \) and \(T_k(G) \) is empty for \(t \geq 3 \).

Proof. Let \(G \in \mathcal{G} \), \(n(T_k(G)) = n + km \) and by Lemma 8, \(\tau_c(T_k(G)) = km + \beta(G) \). Therefore,

\[
\tau_c(T_k(G)) \leq \frac{n(T_k(G))}{2} (=) km + \beta(G) \leq \frac{n + 2km}{2} (=) \beta(G) \leq \frac{n}{2}.
\]

Hence, \(T_k(\mathcal{G}) \) satisfies \((2)\)-property if and only if \(\beta(G) \leq \frac{n}{2} \forall G \in \mathcal{G} \).

If \(G \) contains at least one edge then \(T_k(G) \) has a clique of size 2 and hence \(T_k(G) \) is empty for \(t \geq 3 \).

Acknowledgements

The authors thank the referees for their suggestions for the improvement of this paper.

References